Appendix E-4 SONIR Alternative Conditions

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

NAME OF PROJECT

DATA INPUT FIELD

251 Searingtown Road

Alternative 2 Conditions

C	П	T	E.	г	1

A	Site Recharge Parameters	Value	Units
1	Area of Site	30.43	acres
2	Precipitation Rate	42.82	inches
3	Acreage of Lawn	18.65	acres
4	Fraction of Land in Lawn	0.613	fraction
5	Evapotranspiration from Lawn	24.20	inches
6	Runoff from Lawn	0.90	inches
7	Acreage of Impervious	9.46	acres
8	Fraction of Land Impervious	0.311	fraction
9	Evaporation from Impervious	4.28	inches
10	Runoff from Impervious	0.00	inches
11	Acreage of Unvegetated	0.00	acres
12	Fraction of Land Unvegetated	0.000	fraction
13	Evapotrans. from Unvegetated	24.20	inches
14	Runoff from Unvegetated	2.1	inches
15	Acreage of Water	0.96	acres
16	Fraction of Site in Water	0.032	fraction
17	Evaporation from Water	30.00	inches
18	Makeup Water (if applicable)	0.00	inches
19	Acreage of Natural Area	1.36	acres
20	Fraction of Land Natural	0.045	fraction
21	Evapotrans. from Natural Area	24.20	inches
22	Runoff from Natural Area	0.30	inches
23	Acreage of Other Area	0.00	acres
24	Fraction of Land Other Area	0.000	fraction
25	Evapotrans. from Other Area	0.00	inches
26	Runoff from Other Area	0.00	inches
27	Acreage of Land Irrigated	18.65	acres
28	Fraction of Land Irrigated	0.613	fraction
29	Irrigation Rate	16.00	inches
30	Number of Dwellings	0	units
31	Water Use per Dwelling	0	gal/day
32	Wastewater Design Flow	0	gal/day
33	Commercial /STP Design Flow	0	gal/day

В	Nitrogen Budget Parameters	Value	Units
1	Persons per Dwelling	4.23	persons
2	Nitrogen per Person per Year	10.0	lbs
3	a. Sanitary Nitrogen Leaching Rate	50%	percent
3	b. Sanitary Nitrogen Leaching Rate	0%	percent
4	Area of Land Fertilized 1	18.65	acres
5	Fertilizer Application Rate 1	2.30	lbs/1000 sq ft
6	Fertilizer Nitrogen Leaching Rate 1	14%	percent
7	Area of Land Fertilized 2	0.00	acres
8	Fertilizer Application Rate 2	0.00	lbs/1000 sq ft
9	Fertilizer Nitrogen Leaching Rate 2	0%	percent
10	Pet Waste Application Rate	3.19	lbs/pet
11	Pet Waste Nitrogen Leaching Rate	50%	percent
12	Area of Land Irrigated	18.65	acres
13	Irrigation Rate	16.00	inches
14	Irrigation Nitrogen Leaching Rate	15%	percent
15	Nitrogen in Precipitation	1.00	mg/l
16	Precipitation Nitrogen Leaching Rate	15%	percent
17	Nitrogen in Water Supply	2.00	mg/l
18	Nitrogen in Commercial/STP Flow	40.00	mg/l

C Comments

- 1) Please refer to user manual for data input instructions.
- 2) Sanitary Nitrogen Leaching Rate 3.a.) is for residential wastewater and 3.b.) is for commercial or STP which varies from 50 percent for conventional systems to 10 percent for STP effluent discharge.

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

SITE RECHARGE COMPUTATIONS

Alt	ernative	· Z	Conc	tition

CII	FFT	1

A Lawn Area Recharge	Value	Units	B Impervious Area Recharge Value Units
1 A = Fraction of Land in Lawn	0.613	fraction	1 A = Fraction of Land in Impervious 0.311 fraction
2 P = Precipitation Rate	42.82	inches	2 P = Precipitation Rate 42.82 inches
3 E = Evapotranspiration Rate	24.20	inches	3 E = Evapotranspiration Rate 4.28 inches
4 Q = Runoff Rate	0.90	inches	4 Q = Runoff Rate 0.00 inches
5 R(1) = P - (E + Q)	17.72	inches	5 $R(i) = P - (E + Q)$ 38.54 inches
6 R(L) = R(l) x A	10.86	inches	6 $R(I) = R(i) \times A$ 11.98 inches
C Unvegetated Area Recharge			D Water Area Loss
1 A = Fraction of Land Unveg.	0.000	fraction	1 A = Fraction of Site in Water 0.032 fraction
2 P = Precipitation Rate	42.82	inches	2 P = Precipitation Rate 42.82 inches
3 E = Evapotranspiration Rate	2.10	inches	3 E = Evaporation Rate 30.00 inches
4 Q = Runoff Rate	0.96	inches	4 Q = Runoff Rate 0.00 inches
5 R(u) = P - (E + Q)	39.76	inches	5 M = Makeup Water 0.00 inches
$6 R(U) = R(u) \times A$	0.00	inches	$6 R(w) = {P - (E+Q)} - M$ 12.82 inches
			$7 R(W) = R(w) \times A \qquad 0.40 \qquad \text{inches}$
E Natural Area Recharge			F Other Area Recharge
1 A = Fraction of Land in Natural	0.045	fraction	1 A = Fraction of Land in Other 0.000 fraction
2 P = Precipitation Rate	42.82	inches	2 P = Precipitation Rate 42.82 inches
3 E = Evapotranspiration Rate	24.20	inches	3 E = Evapotranspiration Rate 0.00 inches
4 Q = Runoff Rate	0.30	inches	4 Q = Runoff Rate 0.00 inches
5 R(n) = P - (E + Q)	18.32	inches	5 R(0) = P - (E + Q) 42.82 inches
$6 R(N) = R(n) \times A$	0.82	inches	$ 6 R(O) = R(o) \times A$ 0.00 inches
G Irrigation Recharge			H Wastewater Recharge
1 A = Fraction of Land Irrigated	0.613	fraction	1 WDF = Wastewater Design Flow 0 gal/day
2 I = Irrigation Rate	16.00	inches	2 WDF = Wastewater Design Flow 0 cu ft/yr
3 E = Evaptranspiration Rate	9.04	inches	3 A = Area of Site 1,325,531 sq ft
4 Q = Runoff Rate	0.90	inches	4 R(ww) = WDF/A 0.00 feet
5 R(irr) = I - (E + Q)	6.06	inches	5 R(WW) = Wastewater Recharge 0.00 inches
$6 R(IRR) = R(irr) \times A$	3.71	inches	

Total Site Recharge					
R(T) =	R(L) + R(I) +	R(U) + R(W) + R(N) + R(O) + R(IRR) + R(WW)			
R (T) =	27.78	inches			

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

SITE NITROGEN BUDGET

Alternative 2 Conditions

A Sanitary Nitrogen-Residential	Value	Units	B Pet Waste Nitrogen	Value	Units
1 Number of Dwellings	0	units	1 AR = Application Rate	3.19	lbs/pet
2 Persons per Dwelling	4.23	capita	2 Human Population	0	capita
3 P = Population	0.00	capita	3 Pets = 17 percent of capita	0	pets
4 N = Nitrogen per person	10	lbs	4 N(p) = AR x pets	0.00	lbs
5 LR = Leaching Rate	50%	percent	5 LR = Leaching Rate	50%	percent
$6 N(S) = P \times N \times LR$	0.00	lbs	$6 N(P) = N(p) \times LR$	0.00	lbs
7 N(S) = Sanitary Nitrogen	0.00	lbs	7 N(P) = Pet Waste Nitrogen	0.00	lbs
C Sanitary Nitrogen (Commercial/ST)	P)		D Water Supply Nitrogen (other than waste	ewater, if applicable)	
1 CF = Commercial/STP Flow	0	gal/day	1 WDF = Wastewater Design Flow	0	gal/day
2 CF = Commercial/STP Flow	0	liters/yr	2 WDF = Wastewater Design Flow	0	liters/yr
3 N = Nitrogen in Commercial	40.00	mg/l	3 N = Nitrogen in Water Supply	2.00	mg/l
4 LR = Leaching Rate	50%	percent	$4 N(WW) = WDF \times N$	0	milligrams
$5 N(S) = CF \times N \times LR$	0	milligrams	5 N(WW) = Wastewater Nitrogen	0.00	lbs
6 N(S) = Sanitary Nitrogen	0.00	lbs			
			F Fertilizer Nitrogen 2		
E Fertilizer Nitrogen 1			1 A = Area of Land Fertilized 2	0	sq ft
1 A = Area of Land Fertilized 1	812,394	sq ft	2 AR = Application Rate	0.00	lbs/1000 sf
2 AR = Application Rate	2.30	lbs/1000 sf	3 LR = Leaching Rate	0%	percent
3 LR = Leaching Rate	14%	percent	$4 N(F2) = A \times AR \times LR$	0.00	lbs
$4 N(F1) = A \times AR \times LR$	261.59	lbs	5 N(F2) = Fertilizer Nitrogen	0.00	lbs
5 N(F1) = Fertilizer Nitrogen	261.59	lbs			
			H Irrigation Nitrogen		
G Precipitation Nitrogen			1 R = Irrigation Recharge (inches)	6.06	inches
1 R(n) = Natural Recharge (feet)	2.01	feet	2 R = Irrigation Rate (feet)	0.50	feet
2 A = Area of Site (sq ft)	1,325,531	sq ft	3 A = Area of Land Irrigated	812,394	sq ft
$3 R(N) = R(n) \times A$	2,658,208	cu ft	$4 R(I) = R(irr) \times A$	410,089	cu ft
4 R(N) = Natural Recharge (liters)	75,280,460	liters	5 R(I) = Site Precipitation (liters)	11,613,734	liters
5 N = Nitrogen in Precipitation	1.00	mg/l	6 N = Nitrogen in Water Supply	2.00	mg/l
6 LR = Leaching Rate	15%	percent	7 LR = Leaching Rate	15%	percent
$7 N(ppt) = R(N) \times N \times LR$	11,292,069	milligrams	$8 N(irr) = R(I) \times N \times LR$	3,484,120	milligrams
8 N(ppt) = Precipitation Nitrogen	24.90	lbs	9 N(irr) = Irrigation Nitrogen	7.68	lbs

Total Site Nitrogen		
N=	N(S) + N(P) +	N(WW) + N(F1) + N(F2) + N(ppt) + N(irr)
N =	294.17	lbs

NELSON, POPE & VOORHIS, LLC MICROCOMPUTER MODEL

NAME OF PROJECT

251 Searingtown Road

Alternative 2 Conditions

FINAL COMPUTATIONS

SHEET 4

\boldsymbol{A}	Nitrogen in Recharge	Value	Units
1	N = Total Nitrogen (lbs)	294.17	lbs
2	N = Total Nitrogen (milligrams)	133,554,254	milligrams
3	R(T) = Total Recharge (inches)	27.78	inches
4	R(T) = Total Recharge (feet)	2.31	feet
5	A = Area of Site	1,325,531	sq ft
6	$R = R(T) \times A$	3,068,298	cu ft
7	R = Site Recharge Volume	86,894,194	liters
9	NR = N/R	1.54	mg/l

FINAL CONCENTRATION OF NITROGEN IN RECHARGE

1.54

В	Site Recharge Summary	Value	Units
1	R(T) = Total Site Recharge	27.78	inches/yr
2	R = Site Recharge Volume	3,068,298	cu ft/yr
3	R = Site Recharge Volume	22,952,463	gal/yr
4	R = Site Recharge Volume	22.95	MG/yr

Conversions used in SONIR

Acres x 43,560 = Square Feet Cubic Feet x 7.48052 = Gallons

Cubic Feet x 28.32 = Liters

Days x 365 = Years

Feet x 12 = Inches

Gallons x 0.1337 = Cubic Feet

Gallons x 3.785 = Liters

 $Grams \ / \ 1,\!000 = Milligrams$

Grams x 0.002205 = Pounds

Milligrams / 1,000 = Grams